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HARMONIC WAVE SOLUTIONS OF THE NONLINEAR

VORTICITY EQUATION FOR A ROTATING VISCOUS FLUID

ABSTRACT

With the assumption of non-divergent horizontal flow,

harmonic wave solutions of the nonlinear hydrodynamic equations

for a rotating, viscous fluid are obtained both for the plane

and for the sphere. These solutions yield waves which may be

damped, amplified, or remain unchanged, depending on the longi-

tudinal and latitudinal extents of the waves, and also on the

vertical profile of its stream function. For plane flow, the

vertical profile of the velocity components is shown to be a

sinusoidal function, or a hyperbolic sine and cosine of z,

proportional to or independent of z. For spherical flow, the

vertical profile is shown to be proportional to a Bessel func-

tion of order n + . and n, a positive integer, is the order of
2

an associated Legendre function. Harmonic waves are amplified,

neutral or damped, depending respectively on whether the argu-

ment of the Bessel function is imaginary, zero or real. No

stationary wave is possible in spherical viscous flow, although

quasi-stationary waves, which may be defined as waves with zero

wave-velocity but changing wave-amplitude, may occur under cer-

tain circumstances.
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HARMONIC WAVE SOLUTIONS OF THE NONLINEAR

VORTICITY EQUATION FOR A ROTATING VISCOUS FLUID

1. Introduction

The linearized vorticity equation for a rotating invisid

fluid was first studied by Rossby (1939), who obtained a solu-

tion for the motion of sinusoidal waves of infinite lateral

extent on an earth whose variation of Coriolis paramter with

latitude is constant. Later Haurwitz (1940) extended Rossby's

method and obtained solutions for waves of finite lateral ex-

tent on a horizontal plane (1940a) and on a sphere (1940b).

Ertel (1943) treated the nonlinear vorticity equation

for a rotating invisid fluid and obtained a solution for sta-

tionary motion of harmonic waves of finite lateral extent on

a sphere. Craig (1945), Neamtan (1946), Rombakis (1948),

HBiland (1951), and Long (1952) have more recently studied

the nonlinear vorticity equation in great detail.

In all the previous treatments the fluid has been consid-

ered as nonviscous, and motion is independent of height. It

is the objective of the present paper to study the fluid motion

including the effects of the viscosity and the height depend-

ency of velocity components. On account of frictional effects,

the stream functions obtained for the solutions vary with time.

iA
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2. Harmonic Wave Solutions of the Nonlinear Vorticity Equation

for a (rotating) Viscous Fluid on an Earth whose Variation of

Coriolis Parameter with Latitude is Constant

If the vertical velocity is neglected and zero horizontal

divergence is assumed, the equations of atmospheric motion and

equation of continuity are

19 U AU OUa 1-U a2
- + + + =--- +( a- + 2,

at 6x ay p ay -a +  (2)

a- + &- = 0 (3)

where x, y, z are the Cartesian coordinates, positive toward

the east, north and upward respectively; u, v the velocity

components in the x- and y-direction respectively; f = 21lsin

where fl is the angular velocity of the rotating earth; 4 is

the latitude; v is the coefficient of kinematic viscosity,

p the pressure and p the density.

Equation (3) shows that there exists a stream function

such that

.=_ ___* , v= 0__t
ay 8 X (4)

If we assume further that fluid is autobarotropic, the vortic-

j \
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ity equation of a rotating viscous fluid is

Ox Oy Ox X OV Of
(5)

ax Oy O 2 X
where

Of 2A c co. (6)

a being the radius of the earth.

Assume wave solutions of the form

(cos K(x-ct)cosXK-y). (7a)
\sin K (x - 17Y - ct) (Tb)

Cos K (x + Rz- Ct) cos K (7C)

*(X'y'Z't) = UY +{1Asin (ay+AZ*I)+B Cos K(X-ct) Cosn K(vy+Rz))}(7d)

sin KUx-y+Rz- ct) (7e)

-Ct

where A, B, R,e : arbitrary constants

d, R, Clt, : constants whose values are to be determined

c = wave velocity, positive toward the east

K = L=wave length

In (Ta) (T7) (7d) V D = twice the lateral
extent of the waves

In (7b) and (7e) : V= reciprocal of the horizontal
slope of the trough and ridge
lines
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Stream functions (Ta), (7o), and (7d) represent waves of finite

lateral extent, whereas stream functions (Tb) and (7e) repre-

sent waves with horizontally tilted troughs and ridges. There

is vertical tilt of troughs and ridges in the waves represented

by (7c), (7d), and (Te) but no vertical tilt in the waves rep-

resented by (7a) and (7b).

It is to be noticed that the mean zonal speed averaged

over a complete wave length,

L
-J-.fudx=U -aAcos(ay+,)g(z)e "it , (8a,b)

L
0

-I-fux= U-aAos(y + .z ). 4' , t (8cd,e)

0

varies not only with latitude but also with height and time.

Here (Sa), (8b), (8c), (8d), and (Be) give the mean zonal speed

corresponding to the waves represented by (Ta), (7b), (7c), (7d),

and (7e), respectively.

Substituting from (Ta), (Tb) in (5), dividing through

with g(z)e "f't and arranging terms, we have

(-inK(X-Ct)CosKiy 
2 9 l"(z) ] co (aY+)

+ ' K ( + r K2(g+').. I -' l z , -(0os K (x-ct) co. KiCly -o,1 \inK(d-, 7y-Ct)
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where g"'(z) denotes the second derivative of g(z). Similarly,

substitution of (7c), (7d), and (7e) in (5) gives

BK{[K201 i)(U-c) +Alj AIdK2I,2]cr(g+z

sinK(x Rz-ct) cos Kiy

Ki K(,q y Rz)) + {a[,i~2~)A sin (aytz+@)

cosK(x -ny+ Rz -ct)

/cos K(x+Rz-ct)cos K y (9c)

+- SK 0I+,q) [t,7 pK2CI+ V'+ R2] co K~x-ct)-cos K61 uR o. (9d)
sin K(x- y+Rz-ct) (9e)

Thus it is seen that (7a), (7b), (7c), (7d), and (7e) are solu-

tions of (5) providing that

, (lOb,eo)

From (9a), (9b), (9c), (9d), and (9e), we have

u- 2 2 (llac,d)
4 CL+ 02)

C=.u L

4w 2(1+ 2) (llb,e)

[42 (2 2 __D2_ (12a)

L 2 02  g(z)J

.gIz)j ' (12b)

L
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4 + I(IRZ] (12cd)

4v 2 " 11+ " +R(1 e

and

N=KR (13)

Equations (la, c, d) give wave velocity in terms of U, 6, the

wave length L, and the lateral extent D/2, whereas (lib, e) give

the wave velocity in terms of U,O 6, L, and the reciprocal of

the horizontal slope of trough and ridge lines of the waves.

Since C,., has been assumed as a constant, g(z) must be propor-

tional to the hyperbolic sine and hyperbolic cosine of z, a

combination of sine and cosine of z, proportional to z, or in-

dependent of z. The last two cases contribute no frictional

effect and are of little interest. We shall consider the

former two cases which will be shown to be the major cause of

the growth of waves under certain circumstances. Let

g(z) = G sinh Cz + E sinh z , (14)

where G and E are arbitrary constants. It is obvious g(z) be-

comes a circular function if C is imaginary.

Stream functions (7a), (7b), (7c), and (7e) may respec-

tively be written

*
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= {cos K(x-ct) cos Kqy (15a)=Uy + A sinl(K_ Y"+ y + Bk

\sin K(x-9y -ct) 15b)
- (G sinh Cz + E cosh Cz).-'(K 0(+9 )- 2 )t

*=-Uy-{Asin(KIY- 2 y+KRz2.)

+(:co (x-ct)cos KyR)} -vK (+. +R )t ( 15c)

sin K(x-i)y+Rx-Ct) (15e)

The first term of the right side of equation (15) gives a con-

stant zonal velocity, the second term a pure zonal current

which is a function of latitude, height and time, the last

term gives both zonal and meridional velocity which is a func-

tion of three coordinates and time. It is of importance to

note that waves will always be damped if the vertical profile

of velocity components is a sinusoidal function of z, propor-

tional to z, or independent of z. If the vertical profile of

the horizontal velocity component is a combination of hyper-

bolic sine and cosine of z, waves may be damped, unchanged,

or amplified, depending respectively on

2 +2 2
K (I+, ) C , (16)
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Examination of (16) reveals that the growth of waves in such

a system depends on the balance of the wave length and the

lateral extent (or the inclination of trough lines) of the

waves with the vertical profile of velocity components. The

smaller the horizontal extent of the waves, the greater the

damping effect will be. The frictional effect generated by

a sinusoidal velocity profile always serves as a damping fac-

tor, whereas a hyperbolic sine and cosine profile of velocity

serves as an amplifying factor. This can be justified from

the following energy considerations. Multiplying (1) (2) by

u and v respectively, then adding these two equations and

integrating it over the volume of the system, we have

2 2J)pdv= dp Op "-'-dr + +-
dt atJax 8y? z 'I

(17)
22@Z 2v

+ v(---+ + V.

Examining the above equation, one finds that frictional effect

tends to decrease the total kinetic energy of the wave system

if the velocity components of the system are sine and cosine

functions of x, y, and z; whereas it tends to increase the

total kinetic energy of the system if the velocity components
1

are hyperbolic sine and cosine functions of x, y and z. The

IFriction also tends to increase the kinetic energy of the
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velocity components of the solutions with which we are deal-

ing in this section are sine and cosine functions in x and y,

but may be independent of z, proportional to z, sine and co-

sine functions of z, or hyperbolic sine and cosine functions

of z. According to the energy considerations it is obvious

that waves will always be damped out in the first three cases,

since the total kinetic energy of the system will decrease due

to frictional effect. However, in the last case the change of

total kinetic energy of the system due to frictional effect,

and therefore the growth of the wave, depends on the balance

of the kinetic energy being fed into the system due to the

vertical hyperbolic sine and cosine profile of velocity com-

ponents, and the kinetic energy being dissipated due to the

horizontal sine and cosine profile of the velocity components.

It has been previously pointed out that solutions (15a,

b, c, d, e) permit not only vertical but also meridional vari-

ations of the mean zonal current. This allows us to approxi-

mate a jet stream by a sinusoidal vertical profile, which

vanishes at the earth ts surface and at z = H, say the height

of a homogeneous atmosphere, and has a maximum speed at

z = K/2. For this case stream functions (15a) and (15b)

system if u, v are proportional to xn, yn, zn for n2. How-
ever, this case is not of interest in the present problem.
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become

*aAsnK 17 y + 4) + a(cos KUc-ct) cot K I? (18a)
* ~ ~ ~ i XAitvI, sn(X-Jy -ct) (18b)

HH

It Is clear that In such a system frictional effects tend to

damp out harmonic waves. Of course atmospheric motion is com-

plicated; wave development is also affected by pressure-density

solenoids and vertical motion. Our objective here is to bring

out the effect of inertial force and frictional force in the

atmospheric motion.

More general solutions of the forms (15a, b, c, d, e) may

be constructed and expressed as follows:

#a
0+A'~d~J 1,cots K.(x-ct)co K (19a)

sinUvK{sinN -t+ ay( (19b)

(snt+EcoshCz)o -~ C)

t~uUY +V{A Sin(dY+K jRz+e)
Izi

act K1(x+Rz-ct)cos K Ily (19c)

sin Ki(- illy +Rz - ct) (19e)

-4
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if
a 2

+ ,~)=a 2 . (20)

Equation (20) indicates a connection between the wave length

and the lateral extent in (19a), (19c) and (19d), between the

wave length and the horizontal inclination of trough-and-ridge-

lines in (19b) and (19e). It is interesting to note that in

viscous plane flow stationary waves occur if both

and K CB+-9

I2= K 2(I+V 2

are satisfied.

Solutions (19a), (19c) and (19d) contain the solutions

of Rossby (1939), Haurwitz (1940a), Craig (1945), and Neamtan

(1946) if we put ..aaR-o whereas solutions (19b) and (19e)

contain the solutions of Machta (1949) and Arakawa (1953) by

putting vseCRxO.

3. Harmonic Wave Solution of the Nonlinear Vorticity Equation

for a Rotating Viscous Fluid on a Sphere

If radial velocity is neglected and zero horizontal di-

vergence is assumed, the two fundamental equations of spheri-

cal motion and equation of continuity are respectively reduced
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to:
to+.L IA.. UaJ -2acos9 UX- 4 tons
at I' 98 rsin9 ex

_ -L Am -_ L ,_8 _K - , . , (21)
Pt r 88 r 80 r 2

2 U 2g8 49 U-j]r j)(2

8t rsin8 O i

rsin8 Ox rsin8)- r

+V2 U 2+ os 0
L r-sin-0 r-sin- 0 'O J'

89 u

es .in 0) + 0o (23)

where

% 2
s, A + , 9 r . r t (24)

Is the three dimensional spherical Laplacian operator. O,X,r

are respectively the colatitude, longitude, and radial distance
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from the center of the earth; U., U. are respectively the ve-

locity components in the direction of the gradient of 0 and X;

k and M are the constants of universal attraction and the mass

of the earth respectively.

Equation of continuity (23) shows that there exists a

stream function j such that

I 8?
U= - i ? , (25)

.J PA(26)uX r ae

The radial component of relative vorticity may be written

q= r $in (UX S i sn 8) -

(27)as a s ) iv

The radial component of absolute vorticity is

q=2Acooe+ jI' , (28)

where

-(sine + 8- (29)

is the spherical surface-Laplacian operator.

If we further assume that the fluid is homogeneous, the

equations of motion may further be written as follows:
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U _ U(q + 2 A cos 0)
at

(30)

au, + U04q+2A cos )
at *

(31)a u + 2. p kM ,. 21 +-

r Txine [ p r 2 81

where

V - 2Cos - (32)
Re V  r sim9 + r sae O6

2u  2+ z u (33)
r sin 8 r sin2 9 "

The vorticity equation of a rotating viscous fluid on a

sphere may be written

F AV+ - ( _ _jal 2_)(A++ zA Cosa)

6t r 'inea 69 aX a8
(34)

=-b[X*+r 028( -)(-A*Jr L o r r j"

To solve (34) we assume a wave solution of the form

1 (,X)r,t) -r 2 cos + Y(9,)X,t)f(r)i 6 vst (35)

where w is a constant, Yn (OX,t) an associated Legendre function

of order n with time dependency, s is a parameter which will be

shown to be related to f(r). The term, -w r2 cos 0, represents

4--
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the part of the stream function resulting from a solid rotation

of angular velocity w relative to the rotating earth. This

term is independent of time due to the fact that solid rota-

tion is not affected by friction. By making use of the fact

that Y satisfies the equationn

4Ynn(n+)YOn- 0 (36)•

and also that:

Acos,=-2cos,, (37)

we have from (35):

A'I+2gr cos.9 2(41+w)r cos9- n(n+0Y f(r)e st  (38)

After substitution of (35) and (38) into (33), the vorticity

equation reduces to

n+ {, } a" - { L . 0 (39)'9t n(n+l|J Ox, - n', 39

It is evident that the associated Legendre function Ynopxt)

is a solution of differential equation (39) if

Yn(,,t)= Yn(,)X- Ant) , (40)

and

2 r
re + $- Y+1 (41)

dr2  r'

where

nn,: - (42)
n(n+0)

'C.
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Differential equation (41) has a solution

f(,)-- r Cz r) r, (43)

where Z I is a Bessel function of order n +

Solution (35) is, therefore

1'(,Xwrt) :-Cr 2cs8 + AP (cos9) (cos9)1o$ m0(-3 tn). •
MZ1

t (44)

Where An and A (m = 1,2, ... , n) are n + 1 amplitude factors,

Bn(m 1,2, ... , n) are n phase angles. Whether the harmonic

waves of this system are amplified, unchanged, or damped, de-

pends respectively on

sSo, (45)

where s is associated with the argument of Bessel function

Zn  (s r) . For large values of sr (in the atmosphere
2

= a+ z and s2 is of the order of 103) 2

behaves like a circular function or an exponential function

according to whether s is a positive or negative number. This

is similar to what we have found for the case of viscous flow

2 a 6.37 x 106m, s2" 7--3 x 104m - I

H
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on a plane. It is also interesting to note that a= n(n+l) .0
(a +Z)a

if f(r) is proportional to or independent of r. For this case

flow is approximately equivalent to non-viscous flow,

If all amplitude factors A vanish except for a certain
n

m, (45) becomes
W=- r Cos8

for m = 1,2, ... , n, which of course is a solution of (34).

It is seen from (46) and (42) that if the relative angular

velocity, i, is absent, the westward wave velocity increases

with decreasing wave length and increasing lateral extent of

the waves. The corresponding angular velocity of the current

in the direction of the gradient of 6 and X are, respectively,

dO !j 8'?
dt r2sin ) ax

s I (47)
mCOS 9 {AT'fF'cos8) sin mC)X-Nt+ SM) r Z r).t

2

-t rT$sing ag m

dP.(cos8) Am d P(cosS) )A +A d(cos) m(-Ant+j. (48)

\0n(
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Fig.1



-20-

Comparison of the corresponding terms in (46), (47), and (48)

shows that the first term of the right hand side of (46) is

the part of the stream function resulting from a solid rota-

tion of angular velocity w relative to the rotating earth.

The second term of the right hand side of (46) gives a purely

zonal current, whereas the last term gives both zonal and me-

ridional flows.

The part of the stream function representing the last

term of (46) gives 2m nodal meridians, or m waves along each

latitudinal circle. In addition:
m

M m d P,(cos 8)
Pn(cOSO)= $in ad(cos 8)m

This is a polynomial in cos e of degree (n - m) which vanishes

on n - m parallels between the poles. Therefore, this part of

the stream function gives cells over the globe which is total

2m (n - m + 1) in number. These traveling cells possess a

period
Tm 2i

It is interesting to note that invisid, spherical-flow waves

become stationary if

2n (50)S=(n-I)(n+2)
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It is seen from (46) that no stationary wave is possible in

viscous flow over a rotating sphere, since this condition would

also require s = 0. But Z (0)= 0 for n # -1/2. However,n

quasi-stationary waves, which may be defined as waves with zero

wave-velocity but changing wave-amplitude, may occur when con-

dition (50) is satisfied. In order to illustrate the distri-

bution of harmonic waves over a spherical surface, the stream

function of an example for quasi-stationary case with m = 4

and n = 5 has been sketched as shown in fig. 1.

4. Conclusions

It has been shown that solutions of the nonlinear vorti-

city equation for a rotating viscous fluid yield waves which

vary with both height and time. Whether these waves are damped,

neutral, or amplified depends on the longitudinal and latitu-

dinal extents of the waves, and also on the vertical profile

of their stream function (therefore their velocity components).

This is evidently due to the effect of Navier-Stokes friction.

Plane-flow waves, for which velocity components are pro-

portional to or independent of height or have a sinusoidal

vertical profile, appear always to be damped; on the other

hand, waves, for which velocity components vary with the hyper-

bolic sine and cosine of z, may be amplified, neutral, or
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2 2)c 2damped, depending respectively on K (I+'9)' . The ve-

locity of propagation of these waves is

C = U - 2 0 2
K0+ ,12

which is independent of height. However, it is of importance

to note that here U is not generally equal to the mean zonal

velocity.

For spherical flow, waves are amplified, neutral or damp-

ed, depending respectively on sO, where s is associated

with the vertical profile of the stream function, which was

found to be proportional to r2 Z (s2  . For large valuesA.__ n ) orlr ale

of s r, r Z I(s r) behaves like a sinusoidal or exponential

function of s r , depending respectively on whether s is a

positive or negative quantity. The period of these spherical

waves was found to be

m 2wT n r[..
L- n+-

It was also found that no stationary wave is possible in

spherical viscous flow, although quasi-stationary waves, which

may be defined as waves with zero wave-velocity but changing

wave-amplitude, may occur when

2 ft

(n-I)(n+2)
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Harmonic waves are generally damped in a laminar viscous

flow between two rotating plates or spherical shells, since

waves must vanish on the solid boundaries. This permits only

a sinusoidal vertical profile of the stream function. It is

seen from the properties of Bessel function that for a certain

integer n the greater the value of s, the smaller the distance

between neighboring zeros of Z ±(sr) . This means that
2

the smaller the distance between two neighboring zeros of the

vertical profile of the stream function, the greater is the

damping factor.
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